Skip to main content

Audio Controlled Mains Switch


Audio Controlled Mains Switch Circuit diagram. It is often useful for audio or video equipment to be switched off automatically after there has been no input signal for a while. The function of the on-off switch in such equipment is then taken over by switch S2 in the accompanying diagram. It remains, however, possible to  switch off manually by means of Si. Automatic  switch-off occurs after there has been no input  signal for about 2 minutes: this delay makes it possible for a new record or cassette to be placed in the  relevant machine.
 
The audio input to the proposed circuit may be  taken from the output of the relevant TV set, amplifier, or whatever. The input earth is held at + 6 V  with respect to the circuit earth by potential divider  Ri-R2-R3-R4. The two 741s function as comparators: the output of ICi goes high when the in- put signal is greater than + 50 mV, whereas the out- put of IC2 goes high when the input signal  becomes more negative than -50 mV. Resistors  R6, R7, and R8 form an OR gate that drives transistor Ti. If the output of either ICi or IC2 is logic  1, Ti conducts.
 
Audio Controlled Mains Switch Circuit diagram :

Audio Controlled Mains Switch Circuit diagram
 
Audio Controlled Mains Switch Circuit Diagram

The 555  operates as a retrigger able monostable,  whose period is determined by Rio and Ci. The  device is triggered when its pin 2 is earthed by the  closing of S2. Its output, pin 3, then remains high  for 1 to 2 minutes, depending on the leakage cur- rent of the 555. 

The monostable resets itself as soon  as the potential across Ci exceeds a certain value.  As long as there is an input signal to the circuit, Ti conducts and Ci remains uncharged. As soon as  the audio signal ceases, Ti switches off, and Ci  charges until the potential across it is sufficient to  reset the 555. The monostable may also be reset by  closing Si, which connects pin 6 of the 555 to + 12 V.
 
Audio-Controlled-Mains-Switch
When IC3 is reset, Ci is discharged via its pin 7. Resistor Rrn serves as protection, because without it Ti could short-circuit the supply lines. When the output of IC3 goes high, T2 conducts,  the relay is energized, and the relay contacts switch on the mains voltage as appropriate. To counter the induced potential when the relay contacts close, which could damage T2, diode Di has been connected in parallel with the relay coil. 


Comments

Popular posts from this blog

TDA2030 complete tone control

At this time I present a series of amplifiers that use IC TDA2030, but this series is equipped with a tone control. Tone controls include Bass, Treebel, and Volume. Power amplifier and tone control has been put together in a single PCB. As well as its power supply circuit was also used as one with the power amp, and tone control. Making it easier in the installation and will look neat. Schematics Layout PCB PCB design This amplifier is a mono amplifier type, can be modif for guitar amplifiers. If not coupled amplifier (mic preamp) then you must deactivated potensio treble and bass, why? because if not using a mic preamp and still maintain potensio treble and bass sound input (input) from the guitar will not or the maximum discharge is not tight on the speakers. So you must deactivated a way to decide which directly connected capacitor with the tone control circuit, and capacitor were connected directly to potensio volume and input jack.

PID instruction in Allen Bradley PLC Closed Loop Control

PID instruction in Allen Bradley PLC [Proportional/Integral/Derivative] Closed Loop Control For   Processor SLC 5/02SLC 5/03SLC 5/04SLC 5/05    MicroLogix 1200 and MicroLogix 1500 (A special PID file replaces the old integer file control block.) Description of PID in PLC   This output instruction is used to control physical properties such as temperature, pressure, liquid level, or flow rate of process loops. The PID instruction normally controls a closed loop using inputs from an analog input module and providing an output to an analog output module as a response to effectively hold a process variable at a desired set point. The PID equation controls the process by sending an output signal to the actuator. The greater the error between the setpoint and the process variable input, the greater the output signal, and vice versa. An additional value (feed forward or bias) can be added to the control output as an offset. The result of the PID calculation (control vari...

NE566 Function Generator Circuit Diagram

The NE566 Function Generator is a Voltage-Controlled Oscillator of exceptional linearity with buf fered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The Oscillator CAN be programmed over a ten-to-one frequency range by proper selection of an external resistance and modulated over a ten-to-one range by the control voltage, with exceptional linearity.  FMAX = 1 MHz     WIDE 1000:1 Continuous Sweep Possible  NE566 Function Generator Circuit Diagram Pdf Datasheet  Sourced by : Circuitsstream