Skip to main content

Voltmeter To Frequency Meter Using 4528


Normally we often encountered the frequency meter can be used in speed sensor, tachometer, measurement or signal recurring. This frequency to voltage converter (FVC) can be used to change the voltage into a digital or analog tachometer. Circuit that consists of three blocks. The first block is squarer, the input signal to a square wave. This block is protected from high input voltage up to 400V, but remember this only works if the value of capacitor C1 is for 400V. Input Impedance around 560k, so it is safe to connect the ignition pick-up coil in parallel with the CDI (capacitor discharge ignition) circuits without a problem. Supply is protected from voltage spike by Zener diode D3. Here is a schematic picture:



The second block is retriggerable monostable multi vibrator. Monostable multi-vibrator is to convert fixed width pulses to provide output, the voltage output of the average will depend on the duty factor pulses input / waveform, but only depends on the input frequency. Pulse width is determined by R9 + R5 and C4. According to the datasheet of IC 4528, the period of the monostable :

t = 0.2 x R5 x C4 x ln (VDD-VSS)

R and C are in ohm and Farad, VDD-VSS is in the pin 16 voltage minus the voltage on pin 8, and t in seconds. Minimal value of R9, the monostable multi-vibrator output pulse width will be 0.2 * 4700 * 22e-9 * ln (12) = 5.139e-5, and this will change the frequency of 19.460 kHz to 12 Volt output. This gives a conversion factor 1.622kHz/Volt. If you set the maximum value to R9 (100k) then the pulse width of monostable multi-vibrator output akan 1.145 MS. This setting will give the maximum voltage output of 12V at 874Hz, or about 72.8Hz per Volt conversion. If you use the tachometer to the application, wide rage this adjustment will accommodate almost any type of engine.

A last block of the first order low pass filter about U2, about 0.1 seconds of time set by R6 and C5 constant. With the slow time, you can not read all the frequencies below 10Hz or close, but OK for a variety of applications. Although the diagram does not show the scheme decoupling capacitor for bypassing the supply line for u3 noise, it’s good to add a 100nF cap u3 as close as possible to the power pin (pin 8 and 16), since the monostable multi-vibrator is sensitive to such noise.

Comments

Popular posts from this blog

TDA2030 complete tone control

At this time I present a series of amplifiers that use IC TDA2030, but this series is equipped with a tone control. Tone controls include Bass, Treebel, and Volume. Power amplifier and tone control has been put together in a single PCB. As well as its power supply circuit was also used as one with the power amp, and tone control. Making it easier in the installation and will look neat. Schematics Layout PCB PCB design This amplifier is a mono amplifier type, can be modif for guitar amplifiers. If not coupled amplifier (mic preamp) then you must deactivated potensio treble and bass, why? because if not using a mic preamp and still maintain potensio treble and bass sound input (input) from the guitar will not or the maximum discharge is not tight on the speakers. So you must deactivated a way to decide which directly connected capacitor with the tone control circuit, and capacitor were connected directly to potensio volume and input jack.

PID instruction in Allen Bradley PLC Closed Loop Control

PID instruction in Allen Bradley PLC [Proportional/Integral/Derivative] Closed Loop Control For   Processor SLC 5/02SLC 5/03SLC 5/04SLC 5/05    MicroLogix 1200 and MicroLogix 1500 (A special PID file replaces the old integer file control block.) Description of PID in PLC   This output instruction is used to control physical properties such as temperature, pressure, liquid level, or flow rate of process loops. The PID instruction normally controls a closed loop using inputs from an analog input module and providing an output to an analog output module as a response to effectively hold a process variable at a desired set point. The PID equation controls the process by sending an output signal to the actuator. The greater the error between the setpoint and the process variable input, the greater the output signal, and vice versa. An additional value (feed forward or bias) can be added to the control output as an offset. The result of the PID calculation (control vari...

NE566 Function Generator Circuit Diagram

The NE566 Function Generator is a Voltage-Controlled Oscillator of exceptional linearity with buf fered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The Oscillator CAN be programmed over a ten-to-one frequency range by proper selection of an external resistance and modulated over a ten-to-one range by the control voltage, with exceptional linearity.  FMAX = 1 MHz     WIDE 1000:1 Continuous Sweep Possible  NE566 Function Generator Circuit Diagram Pdf Datasheet  Sourced by : Circuitsstream