Skip to main content

CASE STUDY IMPLEMENTATION AND EXAMPLES OF IRDA



Circuit Enables PCs to Communicate via IrDA

Introduction of IRDA

The Infrared Data Association (IrDA) is an industry driven interest group that was founded in 1993 by around 50 companies. IrDA provides specifications for a complete set of protocols for wireless infrared communications and the name "IrDA" also refers to that set of protocols. The main reason for using IrDA had been wireless data transfer over the “last one meter” using point and shoot principles. Thus, it has been implemented in portable devices such as mobile phones, laptops, cameras, printers, medical devices. Main characteristics of this kind of wireless optical communicationis physically secure data transfer, Line-of-Sight (LOS) and very low bit error rate (BER) that makes it very efficient.

Abstract:
This application note describes a simple circuit allowing a PC to communicate via an IrDA-specified optical data port. The circuit employs only two integrated circuits (ICs), an external infrared LED, and an external avalanche photodector  to interface between a PCs RS-232 serial port and the optical link. Standard baud rates from 600 baud to 230.4k baud may be selected or programmed by SPI signals. The circuit is a complete IrDA physical layer.

A specification defined by the Infrared Data Association (IrDA) in 1993 allows devices from different manufacturers to communicate without wires. IR ports are now available in various laptops, keyboards, PDAs, and calculators, but not in most desktop PCs. The two-IC circuit in Figure 1 permits a PC to communicate with other IR-port devices.


Figure 1. These two ICs enable a PC to communicate with a standard IrDA port.

IC1 includes two RS-232 transceivers, an IR transceiver, and one encoder/decoder (ENDEC). The connections shown enable it to convert from RS-232 to IrDA and vice versa. To compress standard NRZ signals into valid IrDA (RZ) signals and to stretch standard RZ IrDA back to standard NRZ, IC1 must be driven by a clock frequency 16 times the baud rate (baudx16).

IC2 is a tiny hardware UART with a test mode that allows its use as an adjustable baudx16 clock generator. While in this test mode, the chip generates the baudx16 clock signal at its RTS terminal. Figure 2 illustrates the RTS signal for a baud rate of 115kbps. You don't have to synchronize this signal to the data stream; this task is accomplished within IC1. IC2 is SPI-compatible and capable of generating any baudx16 clock up to 3.6864MHz (which corresponds to a baud rate of 230.4kbps).



Figure 2. IC2 of Figure 1 generates this baudx16 clock (top trace) in response to a 115kbps baud rate.

Using the SPI interface, you configure IC2's baudx16 test mode with two 16-bit digital words (Figure 3), in which bits B3-B30 are set according to a baud-rate selection table (see below). The two words set the baud rate for the baudx16 clock. They can be loaded with a programmable lab-data generator such as the Tektronix DG2020(A) or a low-cost microcontroller like the PIC16F84. The SPI port is used for this operation only once.

Figure 3. These 16-bit words configure IC2 (Figure 1) in its baudx16 test mode.

Figure 4 shows the conversion of standard NRZ logic signals (coming from IC1's TTL-compatible R1OUT terminal) to IrDA RZ logic signals at 115kbps. IC2 provides the baudx16 clock.


Figure 4.
These waveforms show the Figure 1 circuit converting NRZ logic signals (top trace) to IrDA logic signals at 115kbps. In an IrDA application, the three major layers required are the physical, protocol, and application layers. The circuit in Figure 1 completes the physical layer for IrDA serial infrared (SIR). Documentation for the protocol and application layers can be downloaded from the IrDA website. The protocol layer consists of the serial infrared link access protocol (IrLAP V.1.1) and the infrared link management protocol (IrLMP V.1.1). The application layer, which enables a standard serial port to support IrDA, is IrCOMM V.1.0.
Application: Used in remote for communicating television sets.Infrared data communication is playing an important role in wireless data communication due to the popularity of laptop computers, personal digital assistants (PDAs), digital cameras, mobile telephones, pagers, and other devices

Comments

Popular posts from this blog

NE566 Function Generator Circuit Diagram

The NE566 Function Generator is a Voltage-Controlled Oscillator of exceptional linearity with buf fered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The Oscillator CAN be programmed over a ten-to-one frequency range by proper selection of an external resistance and modulated over a ten-to-one range by the control voltage, with exceptional linearity.  FMAX = 1 MHz     WIDE 1000:1 Continuous Sweep Possible  NE566 Function Generator Circuit Diagram Pdf Datasheet  Sourced by : Circuitsstream

Transceiver Homebrew QRP SSB 80M Band

Radio communication transceiver is a radio transmitter at the same time the plane doubles as a radio receiver used for communication purposes. It consists of the transmitter and the receiver are assembled in an integrated way. In mulamula generation, the transmitter or receiver or transmitter and receiver sections are assembled separately and is part of a stand sendirisendiri and can work well sendirisendiri Currently employed both parts are integrated in turn. Aircraft simple transmitter consists of an oscillator generating radio vibration and this vibration after vibration boarded with our voice, in a technique called dimodulir radio, then by the antenna is converted into radio waves and transmitted. As we know that the sound waves we can not reach long distances, although its power is quite large, while the radio waves with a relatively small force can reach a distance of thousands of kilometers. In order for our voice can reach a far distance, then our voice superimposed on radio w...

Altec Lansing 353A – power amplifier – vacuum tube type – Circuit diagram 6L6 12AX7

Used tubes – 12AX7 [pre-amplifier, tone control and audio pre-amplifier] – 6L6GC [audio output] Circuit diagram Tube pin-out -6L6 Tube pin-out 12AX7