Skip to main content

Low Cost 9V FM Transmitter


A very simple and useful circuit that require few external components and operates in FM band ( above 100 MHz ). This circuit diagram transmitter needs to be powered from a 9 volts battery or from another 9 volts regulated power supply . The tuned coil L1, has two output tappings for the antenna connection, marked "A" and "B". These are both low-level outputs and you choose which tapping you want to use ( stable low range, or more unstable but higher range).

Transmitter

Tap B (2.5%) takes just a very small portion of signal from the oscillator circuit and therefore gives a very frequency stable transmitter. The output level (around 2.5mW) and range are therefore somewhat reduced.  Tap A (10%) delivers very much more power (around 10mW) to the antenna load. This gives you a greater range, but at the expense of frequency stability.

All component leads should be kept as short as possible. The LINK wire on the PCB should lay flat on the PCB. Use the cutoff from a resistor leg. Antenna length for circuit diagram transmitter varies with frequency for optimum distance: 90MHz 80 cm, 95MHz 75cm, 100MHz 70 cm, 105 MHz 68 cm. The frequency determining elements (L1, C5 and C6) form a simple LC tuned oscillator. The inherent problem with this type of circuit diagram transmitter is that any external load (antenna) will change the operating frequency.

The inductor L1 must have around 5.5 turns of enameled 0.5 mm Cu wire , and must have a diameter ( coil diameter) around 5 mm.


Comments

Popular posts from this blog

TDA2030 complete tone control

At this time I present a series of amplifiers that use IC TDA2030, but this series is equipped with a tone control. Tone controls include Bass, Treebel, and Volume. Power amplifier and tone control has been put together in a single PCB. As well as its power supply circuit was also used as one with the power amp, and tone control. Making it easier in the installation and will look neat. Schematics Layout PCB PCB design This amplifier is a mono amplifier type, can be modif for guitar amplifiers. If not coupled amplifier (mic preamp) then you must deactivated potensio treble and bass, why? because if not using a mic preamp and still maintain potensio treble and bass sound input (input) from the guitar will not or the maximum discharge is not tight on the speakers. So you must deactivated a way to decide which directly connected capacitor with the tone control circuit, and capacitor were connected directly to potensio volume and input jack.

PID instruction in Allen Bradley PLC Closed Loop Control

PID instruction in Allen Bradley PLC [Proportional/Integral/Derivative] Closed Loop Control For   Processor SLC 5/02SLC 5/03SLC 5/04SLC 5/05    MicroLogix 1200 and MicroLogix 1500 (A special PID file replaces the old integer file control block.) Description of PID in PLC   This output instruction is used to control physical properties such as temperature, pressure, liquid level, or flow rate of process loops. The PID instruction normally controls a closed loop using inputs from an analog input module and providing an output to an analog output module as a response to effectively hold a process variable at a desired set point. The PID equation controls the process by sending an output signal to the actuator. The greater the error between the setpoint and the process variable input, the greater the output signal, and vice versa. An additional value (feed forward or bias) can be added to the control output as an offset. The result of the PID calculation (control vari...

NE566 Function Generator Circuit Diagram

The NE566 Function Generator is a Voltage-Controlled Oscillator of exceptional linearity with buf fered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The Oscillator CAN be programmed over a ten-to-one frequency range by proper selection of an external resistance and modulated over a ten-to-one range by the control voltage, with exceptional linearity.  FMAX = 1 MHz     WIDE 1000:1 Continuous Sweep Possible  NE566 Function Generator Circuit Diagram Pdf Datasheet  Sourced by : Circuitsstream