Skip to main content

Converting a DCM Motor


We recently bought a train set made by a renowned company and just couldn’t resist looking inside the locomotive. Although it did have an electronic decoder, the DCM motor was already available 35 (!) years ago. It is most likely that this motor is used due to financial constraints, because Märklin (as you probably guessed) also has a modern 5-pole motor as part of its range. Incidentally, they have recently introduced a brushless model. 

The DCM motor used in our locomotive is still an old-fashioned 3-pole series motor with an electromagnet to provide motive power. The new 5-pole motor has a permanent magnet. We therefore wondered if we couldn’t improve the driving characteristics if we powered the field winding separately, using a bridge rectifier and a 27 Ω current limiting resistor. This would effectively create a permanent magnet. The result was that the driving characteristics improved at lower speeds, but the initial acceleration remained the same. But a constant 0.5 A flows through the winding, which seems wasteful of the (limited) track power. A small circuit can reduce this current to less than half, making this technique more acceptable. 

Circuit diagram :


Converting a DCM Motor-Circuit Diagram
Converting a DCM Motor Circuit Diagram

The field winding has to be disconnected from the rest (3 wires). A freewheeling diode (D1, Schottky) is then connected across the whole winding. The centre tap of the winding is no longer used. When FET T1 turns on, the current through the winding increases from zero until it reaches about 0.5 A. At this current the voltage drop across R4-R7 becomes greater than the reference voltage across D2 and the opamp will turn off the FET. The current through the winding continues flowing via D1, gradually reducing in strength. When the current has fallen about 10% (due to hysteresis caused by R3), IC1 will turn on T1 again. The cur-rent will increase again to 0.5 A and the FET is turned off again. This goes on continuously.
The current through the field winding is fairly constant, creating a good imitation of a permanent magnet. The nice thing about this circuit is that the total current consumption is only about 0.2 A, whereas the current flow through the winding is a continuous 0.5 A. 

We made this modification because we wanted to convert the locomotive for use with a DCC decoder. A new controller is needed in any case, because the polarity on the rotor winding has to be reversed to change its direction of rotation. In the original motor this was done by using the other half of the winding.
There is also a good non-electrical alter-native: put a permanent magnet in the motor. But we didn’t have a suitable magnet, whereas all electronic parts could be picked straight from the spares box. 




Source By : Streampowers

Comments

Popular posts from this blog

TDA2030 complete tone control

At this time I present a series of amplifiers that use IC TDA2030, but this series is equipped with a tone control. Tone controls include Bass, Treebel, and Volume. Power amplifier and tone control has been put together in a single PCB. As well as its power supply circuit was also used as one with the power amp, and tone control. Making it easier in the installation and will look neat. Schematics Layout PCB PCB design This amplifier is a mono amplifier type, can be modif for guitar amplifiers. If not coupled amplifier (mic preamp) then you must deactivated potensio treble and bass, why? because if not using a mic preamp and still maintain potensio treble and bass sound input (input) from the guitar will not or the maximum discharge is not tight on the speakers. So you must deactivated a way to decide which directly connected capacitor with the tone control circuit, and capacitor were connected directly to potensio volume and input jack.

PID instruction in Allen Bradley PLC Closed Loop Control

PID instruction in Allen Bradley PLC [Proportional/Integral/Derivative] Closed Loop Control For   Processor SLC 5/02SLC 5/03SLC 5/04SLC 5/05    MicroLogix 1200 and MicroLogix 1500 (A special PID file replaces the old integer file control block.) Description of PID in PLC   This output instruction is used to control physical properties such as temperature, pressure, liquid level, or flow rate of process loops. The PID instruction normally controls a closed loop using inputs from an analog input module and providing an output to an analog output module as a response to effectively hold a process variable at a desired set point. The PID equation controls the process by sending an output signal to the actuator. The greater the error between the setpoint and the process variable input, the greater the output signal, and vice versa. An additional value (feed forward or bias) can be added to the control output as an offset. The result of the PID calculation (control vari...

NE566 Function Generator Circuit Diagram

The NE566 Function Generator is a Voltage-Controlled Oscillator of exceptional linearity with buf fered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The Oscillator CAN be programmed over a ten-to-one frequency range by proper selection of an external resistance and modulated over a ten-to-one range by the control voltage, with exceptional linearity.  FMAX = 1 MHz     WIDE 1000:1 Continuous Sweep Possible  NE566 Function Generator Circuit Diagram Pdf Datasheet  Sourced by : Circuitsstream