Skip to main content

Going for Gold


Going for Gold Circuit Diagram  The title refers to a popular TV game show where the contestants each have a big button.  The  game show  host  asks  a  question and the first contestant to press their but-ton makes an illuminated indicator light up on their desk. The other contestants’ buttons  are automatically inhibited, so that everyone can see who was the first contestant to press their button, and so is allowed to answer the question. The project described here shows how to build a similar sortof  refereeing device yourself, using simple resources and without needing a microcontroller, which is  pretty rare these days! The basic circuit is for  just two contestants, but the modular design  means it can easily be expanded.


 Going for Gold-Circuit-Diagram
Going for Gold Circuit Diagram

The diagram shows three buttons: S2 and S3  are the buttons for the two contestants, S1 is  the button for the host, which allows them to  reset the circuit before each fresh question.  The ‘brains’ of the circuit is IC1, a 4013 dual D-type flip-flop, of which only the Set and Reset  inputs are used here. This circuit can handle  quite a wide supply voltage range, from 3 to  15 V, and so the project can easily be run off a 4.5 V battery pack (the power consumption is minimal).

IC1 is armed by pressing S1 (reset). In this  state, the non-inverting outputs (pins 1 and  13) are at 0 and the inverting outputs (pins 12  and 12) are at 1. Hence line A is pulled high  by R1, since diodes D2 and D4 are not biased  on. If contestant 1 presses button S2, the  non-inverting output of flip-flop IC1a goes  to logic 1, and LED D1 lights via T1 to indicate that contestant 1 has pressed the but-ton. At the same time, the flip-flop’s invert-ing output goes to logic 0, making diode  D2 conduct. Line A is now pulled down to 0,  and consequently contestant 2’s button S3  can no longer trigger the second flip-flop.  The reverse happens if it is contestant 2 who  presses their button S3 first.

The circuit can be extended to 4 or 6 contest-ants (or even more) by adding a second or  third (or more) 4013 IC. All you have to do is  repeat the circuit (minus R1, R2, and S1) and connect to the A, B, Vdd, and 0 V lines on the right-hand side.

Author : Joseph Kopff - Copyright : Elektor

Comments

Popular posts from this blog

NE566 Function Generator Circuit Diagram

The NE566 Function Generator is a Voltage-Controlled Oscillator of exceptional linearity with buf fered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The Oscillator CAN be programmed over a ten-to-one frequency range by proper selection of an external resistance and modulated over a ten-to-one range by the control voltage, with exceptional linearity.  FMAX = 1 MHz     WIDE 1000:1 Continuous Sweep Possible  NE566 Function Generator Circuit Diagram Pdf Datasheet  Sourced by : Circuitsstream

Transceiver Homebrew QRP SSB 80M Band

Radio communication transceiver is a radio transmitter at the same time the plane doubles as a radio receiver used for communication purposes. It consists of the transmitter and the receiver are assembled in an integrated way. In mulamula generation, the transmitter or receiver or transmitter and receiver sections are assembled separately and is part of a stand sendirisendiri and can work well sendirisendiri Currently employed both parts are integrated in turn. Aircraft simple transmitter consists of an oscillator generating radio vibration and this vibration after vibration boarded with our voice, in a technique called dimodulir radio, then by the antenna is converted into radio waves and transmitted. As we know that the sound waves we can not reach long distances, although its power is quite large, while the radio waves with a relatively small force can reach a distance of thousands of kilometers. In order for our voice can reach a far distance, then our voice superimposed on radio w...

Altec Lansing 353A – power amplifier – vacuum tube type – Circuit diagram 6L6 12AX7

Used tubes – 12AX7 [pre-amplifier, tone control and audio pre-amplifier] – 6L6GC [audio output] Circuit diagram Tube pin-out -6L6 Tube pin-out 12AX7