Skip to main content

Schematic 10 Way Electronic Switch


This is a 10 way electronic latching switch using just two switches. Each output can be latched on and off independently.

10 Way Electronic Switch Circuit Diagram

Notes
The schematic is shown above, and two switches S1 and S2 are used to control the outputs. The main work is done by U2 a CMOS4017 decade counter divider IC. At switch on, C1 is quickly charged by R4 and a brief reset pulse is applied to to the reset pins of both U1 and U2. This results in U1, a 7 segment display display driver and decade counter showing "zero" on the 7 segment display and pin 3 (which is the output zero) of the 4017 becoming high.

Each time S1 is pressed the clock input of U2 is incremented, by one count and the display and 4017 will cycle through all 10 outputs. A separate reset switch is not provided as the display reads the currently selected output.

When the 4017 is on a particular output, for example zero, then the controlled circuit can be turned on or off using switch S2. To latch the output a type JK flip-flop is used at each of the ten outputs. This works as follows. When the 4017 is at output zero, pin 3 will be high. This enables both JK inputs of the flip flop (U4A at output zero) and the circuit can then be toggled via pulses applied from switch S2. The 'Q' output of each flip-flop drives and NPN transistor and then a small relay. The NPN transistors can be any general purpose type, e.g. 2N2222, BC108, BC548 etc. The relay allows external loads of different voltage and current to this circuit to be controlled.

For clarity, the schematic is drawn with outputs, zero, six and nine shown only. The pinouts for the CMOS IC's 4017 and 4026 can be found in the practical section.

The CMOS 4026 is available at ESR Electronics in the UK.

If required, the external circuits power supply can be used to power the driver transistor and relay. This is shown on output 6, the dotted lines representing the power coming from an external battery. The only other requirement here is that the external circuits common negative terminal is tied to this circuits common chassis (negative) terminal.

Comments

Popular posts from this blog

TDA2030 complete tone control

At this time I present a series of amplifiers that use IC TDA2030, but this series is equipped with a tone control. Tone controls include Bass, Treebel, and Volume. Power amplifier and tone control has been put together in a single PCB. As well as its power supply circuit was also used as one with the power amp, and tone control. Making it easier in the installation and will look neat. Schematics Layout PCB PCB design This amplifier is a mono amplifier type, can be modif for guitar amplifiers. If not coupled amplifier (mic preamp) then you must deactivated potensio treble and bass, why? because if not using a mic preamp and still maintain potensio treble and bass sound input (input) from the guitar will not or the maximum discharge is not tight on the speakers. So you must deactivated a way to decide which directly connected capacitor with the tone control circuit, and capacitor were connected directly to potensio volume and input jack.

PID instruction in Allen Bradley PLC Closed Loop Control

PID instruction in Allen Bradley PLC [Proportional/Integral/Derivative] Closed Loop Control For   Processor SLC 5/02SLC 5/03SLC 5/04SLC 5/05    MicroLogix 1200 and MicroLogix 1500 (A special PID file replaces the old integer file control block.) Description of PID in PLC   This output instruction is used to control physical properties such as temperature, pressure, liquid level, or flow rate of process loops. The PID instruction normally controls a closed loop using inputs from an analog input module and providing an output to an analog output module as a response to effectively hold a process variable at a desired set point. The PID equation controls the process by sending an output signal to the actuator. The greater the error between the setpoint and the process variable input, the greater the output signal, and vice versa. An additional value (feed forward or bias) can be added to the control output as an offset. The result of the PID calculation (control vari...

NE566 Function Generator Circuit Diagram

The NE566 Function Generator is a Voltage-Controlled Oscillator of exceptional linearity with buf fered square wave and triangle wave outputs. The frequency of oscillation is determined by an external resistor and capacitor and the voltage applied to the control terminal. The Oscillator CAN be programmed over a ten-to-one frequency range by proper selection of an external resistance and modulated over a ten-to-one range by the control voltage, with exceptional linearity.  FMAX = 1 MHz     WIDE 1000:1 Continuous Sweep Possible  NE566 Function Generator Circuit Diagram Pdf Datasheet  Sourced by : Circuitsstream